Intro to ZNE (and Beyond): Design for Residential Buildings

Bronwyn Barry, CPHD

Passive House California

North American Passive House Network

What you'll learn today: (CEU's)

- Understand the five essential building science design principles needed for optimal building comfort and lowest energy use
- Identify locally-specific R-values for walls, roof and floor assemblies already being used in Palo Alto residential buildings to meet Net Zero and Passive House performance targets
- How to effectively work with an energy consultant to optimize performance at the early design stages
- How to integrate new tools for high performance design into your work process

Today's Agenda

1.00pm	10	Welcome & Introductions
· · ·		
	45	New Goals, New Thinking, A New Way of Design
	35	Intro to PH/NZE Fundamentals
2.30pm	15	Break
	35	What Does ZNE Look like in Palo Alto?
	25	Easier energy modeling - demo of new tools
		5, 5
	45	Technical Panel - Getting to Zero
	10	Next Steps - Resources & Closing
4.40pm	20	Networking

What California needs now

- 1. Stable Peak Load predictions for both summer and winter...
- 2. Absolute energy targets with reliable predictably reliable results
- 3. Utilities delivering all renewable energy

Chie Kawahara Midorihaus Following

#passivehouse feels wonderful during this heatwave: 101F outside 73F inside without air conditioning

California's current reality

Household Energy Use in California

A closer look at residential energy consumption

All data from EIA's 2009 Residential Energy Consumption Survey www.ela.gov/consumption/residential/

- California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site consumption results in households spending 30% less for energy than the U.S. average.
- Average site electricity consumption in California homes is among the lowest in the nation, as the mild climate in much of the state leads to less reliance on electricity for air conditioning and heating.
- Spending on electricity by California households is closer to the national average due to higher prices in the state.

ALL ENERGY average per household (excl. transportation)

ELECTRICITY ONLY average per household

Site Consumption

kilowatthours

12,000

10,000

8,000

6,000

4,000

2,000

0

US

CONSUMPTION BY END USE

Since California has a milder climate than other areas of the United States, space heating and air conditioning make up a relatively small portion of energy use. In California homes, heating and cooling combined account for 31% of total energy use.

- CA homes use 31% less than the U.S. average
- Expenditure for energy about the same as U.S. average

DIVISION: Pacific (PAC) STATES INCLUDED: Alaska, California, Hawaii, Oregon, Washington

What that means in PV

Min. Required Roof Area = 780 SF (Assuming 17.3 SF/panel) Energy use: 18,170 kWh/yr

- > Assume: 400 kWh/panel
- > 12 kW PV Array
- = 45 panels!

California Carbon Emissions

California Environmental Protection Agency

Back to Graphs & Plots

A | A AbAt ARB | Calendars | A-Z Index |

Contact Us

Last reviewed on May 31, 2016 California GHG Inventory for 2014 — by IPCC Category

TreeMap notes:

 The area of each category is proportional to its GHG emissions;
The color reflects change in emissions since year 2000; grey for no change, greener for decrease since 2000, browner for increase since 2000.

User Interaction:

 Hover over a category to display the 2013 GHG emission estimate in Tg (i.e. million metric tonne) of CO2 equivalent and the change since year 2000 (2000 value = index 100 so index=80 means 20% decrease, index=200 means doubling).

- Left click to drill down into category details.
- Right click to move up to parent category.
- · Press F11 to view full screen.

Fourth Assessment Report

Category notes

 These are process-oriented categories. They follow the IPCC categorization to ensure comparability with international inventories, which a e organized in a similar manner. CO2 equivalence based on Global Warming Potential values from IPCC

3 - Agriculture, 1 - Energy 1A - Fuel Combustion Activities 11 3A - Livestock 1A3 - Transport 1A1 - Energy Industries, 3A2 - Manure 1A3b - Road Transportation 1A3 1A1a - Main Activity Electricity and Heat Production 3A2a - Cattle 1A3bii - Light-duty Trucks 1A 1A1ai - Electricity Generation 1A1aii -3A2ai - Dairy 1A3biii Cows **Combined Heat** Heavy duty Trucks and Power Generation 3A1 - Enteric (CHP) 3A1a - Cattle Buses 3A1ai - Dairy 3A1a Cows 3C - Aggregate 1A3 3C4 - Direct N20 Indire Emissions 3C7 2 - Industrial 2F - Product Uses as Substitutes for Ozone 1A1c - Manufacture of 1A1b - Petroleum Refining Depleting Substances 1A1cli - Other Energy Industries, 1A3bi - Cars Cars: 12% 2A -2H - Other 1A4 - Other Sect 1A2 - Manufacturing rs 2H3 -1A4b - Residential Hydrogen 1A4a -1A2c -1A2m Ceme rodu mercial/Insti Chemicals Non-2G 2D pecific Residential: Industr 2D1 2C 27 - 2E 4 - Waste -Ofi 5.37% 1A2f - 1A2h 1A2e 4A - Solid Waste 4D -Food Non-4A1 - Managed 1A2k 4D roce Metall 1A4c Waste Dispos Sites Minera 1A. 1 ulture/Fores

Total Gross Emissions

LEAD BY EXAMPLE (A COUPLE OF MY OWN DESIGNS)

ALAMO PASSIVHAUS

ALL ELECTRIC (INDUCTION COOKTOP & LED'S)

NOMINALY THIS IS A PLUS ENERGY HOME...

PROJECT STATS

Alamo - CA Climate Zone 12

HDD & CDD	2602	1578
Area & TFA	2968 SF	2342 SF
Net Annual Energy Use &		
Production	10,707 kWh	12,767 kWh
PV	7.5 kW	
Gas/Electric Split	All Electric	
	Heat Pump,	Heat Pump
Mech systems	HRV	WH

COMPARED TO 2016 T-24 CODE REQUIREMENTS

MY PHPP MODEL IS INSANELY ACCURATE!

32.4 M		
kWh/(m ²	12	Heating demand
W/m ²	10	Heating load
kWh/(m ²	7	ecif. space cooling demand
W/m ²	7	Cooling load
%		ı (> 23.33333333333333 °C)
%		(> 23.33333333333333 °C)

Treated floor area

m

217.6

NO PERFORMANCE GAP!

PHPP	kWh/a	НР СОР	EST.	ACT.
HEAT	2,596	3	865	849
COOL	1,533	3	511	594
	- 20	IMAGE	credit : Allen Gillila	nd, One Sky Homes

WITH NET METERING MY NUMBERS LOOK GREAT!

EUI = 9.5

-5000 Production

HouseUse EV Charger

Net +

■kWh/yr

-15000

-10000

000

5000

BUT PRACTICALLY THIS HOME STILL NEEDS A UTILITY!

		Passive Ho	ouse ve	rificatio	on		_				
	K		N.		ŝ	R		:	25 E	nergy balanc	a h
Building .	Alerto series a	A TANKI	50-	10 3	4						
Breet	NAME LAVOTON	ik Lane						1	20	44	1
Positionite / City	Alamo, CA	Contraction of the second s									L.
Country:	Storie Fast	v Bestdence									
Cimate	CA, San June		-			a state of the local states and the					
Harne Gerer / Client Broet	Dennie Ruang	and Lynn Ito				eurealli accard				82	
Postcoro/City		i						_1	15	-	
Architecture	Gine Day Room	is - Bronwyn Barry						*a)	3		
Postone / Chr	Ban Jose, D							5	8		
Mechanical motors	One Sky Sym	n - Allen milligand						5	8		
Breat Postuces / City	San Jose, C							tows (k		4.0	h
Year of construction:	2015	interior in	Imperature winter	21.1	15	Enclosed volume V. m ²	1055.0	te .		-7.1	
No. of dwaring units	1	Attention Sector	perstare earliest	23.3	3	Mechanical cooling		문		and the second second	
flore equally	60	Ath/K par or TEA	Dillo symmer	4.0	Witer					2.0	
and the second statement of the second	and a reaction of the second	in the second		_							
Specie scrong more	nda with rotorence to t	Treated floor area Treated floor area	217.6	ŧ.		Requirements	Futford?"				Ĩ.
Space heating		Heating demand	12	kWh/0m [*] aj		TE KWW/WWW	360				4.
		Heating load	10	Win ³		10 [°] Wint ⁴	368		5	55	
Rance cooling	Overall st	pecifi space cooling demand	7	KWINOm ¹ a)		to estimate	300				
		Cooling load	7	Win!	1		1				
Freq	paricy of overheating	y (> 23 3033333333333 'C)		5	1	2	-				
Printery scheres	Testing costs	adventuries (MA	74	a Minimo fait	7	120 millionalar	100		1		
Contraction of the second	CHOX space his	also and autilian similaria	18	Withday (a)	-	Conditional International				1.7	
Specific a	rimary wrangy redu	nton Trough agin electricity		KW/W/m (a)		36			0		_
Airlightress		Pressurization best result run	0.3	10	1	0.8 %	900			Losses	
Parative Mount?					=	anyty feet cara maning.	and and	Annı	ua	l Ener	°C
				_	-						-
and the second second	Week	Month	Year								
Day											
E0 kWh	ige 📕	Production	09	tdoor T	empe	rature			1		
SO kWh	19¢ 💼	Production	0.	itdoor T	empe	rature	n n				
SO KWh	ige 📕	Production	ou	itdoor T	empe M		A A	AL MANA			
50 kWh	ige	Production	— Ou	ndoor T			M	MANN			W
So kwh	nge 📕	Production	0u		empe M	rature	M	Mann	M	minil	W
SO kWh SO kWh 40 kWh 30 kWh 20 kWh	ige	Production	- Ou		empe M	rature	M		M	WH	
SO kWh SO kWh 30 kWh 20 kWh	19e	Production	- Ou				M	MANN	M	WH	W
SO kWh SO kWh 30 kWh 20 kWh	ige	Production	- 0,				M	My Man	M	WH	W

gy Use vs Generation Gap

Gains

What About Retrofits?

BEFORE

AFTER

COPYRIGHT ONE SKY HOMES 2016

Where we started

BEFORE

SIDE ELEVATION (SW)

REAR ELEVATION (NW)

SIDE ELEVATION (NE)

8

REAR - SOUTH WEST

SIDE - SOUTH WEST

f

FRONT ELEVATION (SE)

FRONT - SOUTH EAST

Elevations

PROJECT STATS

Sunnyvale - CA Climate Zone 3

HDD/CDD	2643	220
Area/TFA	2000 SF	1560 SF
Net Annual Energy Use &		
Production	5,765 kWh/yr	none
	Gas Cooking,	
Gas/Electric Split	DHW	
	1 ton Fujitsu	
	HP &	
	Panasonic	
	Bath Fans,	
HVAC systems	HRV	

ASSEMBLIES (hr.ft².F/BTU)

MEASURED SAVINGS:

- \$499 per year energy cost
- 40% Source Energy

	Pre Retrofit	Post Retrofit	Annual Savings
Electricity			
Space Heating (kWh/yr)	510	718	-208
Space Cooling (kWh/yr)	0	90	-90
Total Electricity (kWh/yr)	5,636	5,765	-129
Natural Gas			Lange of the second sec
Space Heating (therms)	510	0	510
Total Natural Gas (therms)	654	150	504
Source Energy (MMBtu/yr) ¹	132	78	54
Utility Cost ²	\$1,473	\$974	\$499

¹Source multipliers of 3.15 for electricity and 1.09 for natural gas based on BEopt v2.2

 2 Utility rates for PG&E rate based on averages from actual utility bills of 1.03/Therm and 0.14 /kWh.

Table 9: Annual Site and Source Energy Savings Normalize to TMY3 Source: http://www.nrel.gov/docs/fy15osti/63085.pdf

Breaking Down Net Zero

PROJECT STATS

Cottle - CA Climate Zone 3

HDD/CDD	2335	574
Area/TFA	3200 SF	2776 SF
Net Annual Energy Use &		
Production	9356 kWh	11,100 kWh
PV		6.2 kW
Gas/Electric Split	Gas Cooking, Solar Hot Water with backup	
	Heat Pump, NightBreeze Cooling, Solar Thermal Hot	

Comparing these homes

Energy Use & Floor Area

Target COMFORT (not energy)

NONE of our clients have asked us to lower their energy bills. ALL have asked for better comfort or to eliminate mold.

Lessons Learned

- 1. Everything you learned in school is wrong!
- 2. Monitor your buildings
- 3. Build a TEAM
- 4. Learn energy modeling
- 5. Design the HVAC system during schematic design

MUSICNY

DECK

30-00

814

ADDITION

6. KISS

30-0"

Get comfortable with mistakes!

Lessons Learned

- Windows (+ Shading) Matter
- □ Air sealing gets you half way there
- Roof Design and Form factor are HUGE
- Drive your own energy model!

THANK YOU!

Bronwyn Barry, CPHD Passive House BB

www.passivehousecal.org

www.naphnetwork.org

Regional Groups Working in Cooperation NAPHN: A Continental Network

PASSIVEHOUSE

CANADA

Passive House Northwest

in support of professionals working with the international Passive House Standard

Passive House Institute

maison

passive québec

2017 NAPHN CONFERENCE & EXPO Attend the Conference

www.naphnconference.com

US CO2 Emissions

California's State Mandate

"The state and nation must be aggressive about setting goals, such as having zero-net-energy residential buildings by 2020 and commercial buildings by 2030." -Gov. Jerry Brown 2012

"Big Bold" goals for ZNE in California

- **2020** 100% ZNE residential new construction
- **2030** 100% ZNE commercial new construction

50% ZNE retrofits of existing buildings

Passive House 101

Passive House 101

19th Century

Albert, Righter & Titman Architects

Albert, Righter & Titman Architects

Albert, Righter & Titman Architects

Passive House in 90 seconds

Click to open video

Passive House Myths

- It's only for single-family homes.
- Airtight buildings have bad air quality.
- You can't open the windows in a PH building.
- PH buildings are blocky and ugly.
- You don't need mechanical systems in PH buildings.
- CA energy code is so strict! We don't need PH.
- PH is overkill for mild California climate.

Passive House Myths

- It's nly for single-family homes.
- Airtight vildings have bad air quality.
- You can't op the windows in a P' Juilding.
- PH buildings are bursky and u
- You don't need mech. All systems in HA illing.
- CA energy code is strict of don't need PH.
- PH is overkill for all California charte.

Passive House is the path to Net Zero.

What Do We Want From Our Buildings?

Use less energy

be more comfortable

be healthier

be more resilient

Use Less Energy Approx 90% reduction in heating & cooling Up to 75% reduction in total energy usage.

Be More Comfortable

More comfortable with steady surface temperature on all surfaces and no drafts

Quiet even in a noisy city

Be Healthier

Cleaner and fresher air. Inside air is completely exchanged with filtered outside.

No mold or moisture problems thanks to reduced thermal bridging and superior ventilation.

Healthier homes, healthier people with fewer respiratory illnesses and relief for asthma sufferers.

Be More Resilient

Cramer Silkworth, Baukraft Engineering, Brooklyn, NY

SUPPORTS RENEWABLES

- Path to Net-Zero Buildings & more.
- Allows switching to all electric buildings.
- More even utility demand profile.
- Primary Energy Renewable (PER) Calculation optimizes building energy use for 100% renewable grid.

INTEGRATED METHODOLOGY

Five Key Principles:

1. CONTINUOUS INSULATION

Insulation levels are climate dependent.

(Think of temperature rated sleeping bags.)

Surrounding enclosed space like a parka.

2. NO THERMAL BRIDGES

Prevents:

- Condensation & moisture damages
- Thermal discomfort
- Energy losses

Not included in traditional energy models.

Eliminate and calculate: lowers risks and increases predictability.

The Pencil Rule

Source: PHI, Author: JS

LINEAR THERMAL BRIDGES (PSI VALUE)

3. INTEGRATED WINDOWS & DOORS

Performance • criteria are climate dependent

Must maintain enclosure continuity of airtightness and insulation.

SAMPLE PHI WINDOW FRAME

This Passive House Institute certificate is based on a U-value for glass of 0.12 Btu/hr·ft²·F

It is possible to get glass with an even lower U-value – for example 0.10 Btu/hr ft² F, which would further improve the rating of this window

WINDOW INSTALL POSITION

To determine the final energy balance impact of moving the installed position, the shading effect of the setback and the resultant solar gains must also be taken into account

THERMAL CONTINUITY = COMFORT

Typical: Double-Glazing

Passive House: Triple-Glazing

Discomfort

Comfort

Even temperatures allows removal of perimeter mechanical systems.

BUILDING ON PASSIVE ELEMENTS

Exterior Shading: Critical for minimizing cooling loads

Compactness: Allows for more even glazing and lower insulation levels.

SHADING (PER WINDOW)

4. CONTINUOUS AIRTIGHTNESS

Airtightness is a driving force of performance.

THE "RED LINE" TEST

VERIFICATION: AIRTIGHTNESS TESTING

Negative Pressure Test

Positive Pressure Test

WHY DO WE BUILD AIRTIGHT?

- Prevention of condensation in the construction
- Prevention of drafts
- Prevention of cold floors in the ground floor
- Preventing air pollution of the room air
- Securing the sound insulation of building components
- Securing the operation and effectiveness of the ventilation system
- Securing the insulation effect of the external building components
- Reduction of ventilation heat losses

5. VENTILATION

Controlled high indoor air quality possible using very little energy.

H/ERV

& OPTIMIZE PASSIVE HEAT GAINS

People

Daylight

Appliances & Equipment

Lighting & Mechanical Systems

NEAR PASSIVE BALANCE.....

We still typically need active space conditioning systems...just much smaller systems.

THEN ADD HEATING & COOLING

- 75% reduction in equipment sizing
- 90% usage • reduction
- Efficient distribution
- Often all electric

Typical to pull distribution to core of building.

HEATING DISTRIBUTION STRATEGIES

VENTILATION AIR

HYDRONIC RADIATOR

RECIRCULATING AIR

ELECTRIC RESISTANCE (Will probably exceed Primary Energy threshold)

HEAT PUMP HEATING +

Can be used for heating and cooling, for many types of buildings. They do not GENERATE heat, but instead use the refrigeration cycle to MOVE (pump) heat.

- Very efficient
- Multiple /Variable capacities
- Single and multi-zone
- Can dehumidify
- Usually run on electricity

DUCTED MINI-SPLIT

Aesthetically more integrated, however more expensive and slightly less efficient

- Ceiling mounted air handler for heating and cooling system
- Note flow and return connections to external compressor
- Condensate drain also required
- Ducted system for distributing heated or cold air
- Don't confuse this with an HRV/ERV- this air handler simply re-circulates indoor air

EFFICIENT SYSTEMS & SMART

Smart systems should enhance performance, not compensate for poor performance.

INSULATION OF FITTINGS

Fittings covered by insulating mouldings. Prefabricated insulating mouldings are available by now.

Not like this: uninsulated pumps

Not like this: uninsulated storage tank connections

QUALITY ASSURANCE

Tools enabling predictability:

www.passivehouse.com

NACC: 9 CERTIFIERS AND

LOCAL PROJECT EXAMPLES

PHCA 2016 PEDALHAUS TOUR

HOTELS

OFFICE BUILDINGS

HISTORIC RESTORATION

COURTHOUSE & PRISON

UNIVERSITY LABORATORY

DORMITORIES

MIXED-USE

SO START MAKING PASSIVE HOUSE BUILDINGS It's just the beginning.

Find out more: www.naphnetwork.org

Register for conference: www.naphconference.com

Register for training: www.naphnetwork.org/training/

Contact Us at NAPHN:

Phone: 929-376-8537 Email: info@naphnetwork.org Address: NAPHN, 450 Lexington Avenue, #3717, New York, NY 10163-3717

Thank you.

Contact Us at LOCAL ORG:

Phone: 123-456-7891 Email: info@localorg.org Address: ACRONYM, Street, Room, City, ST 12345-1234

Is there a Passive House 'Vernacular' in Palo Alto?

Bronwyn Barry

Intro to Zero Net Energy (and Beyond) City of Palo Alto September 2017

Warm Climates: The Palo Alto Cluster

Site & Population Density

Site Geographic Location:

Climate Data Comparison

Stanford Street

TEAM: Owners: Kate Kramer & Sven Thesen Design: Arkin Tilt Architects PH Consultant: Dan Johnson Contractor: Quantum Builders

Oxford Street

TEAM:

Owners: Magic Learning Community Design: (A Long List of Collaborators) PH Consultant: Allen Gilliland, Pearl Renaker, Luke Morton Contractor: Dan Fulga Construction

Field Chiarello Retrofit

TEAM: Owners: Chris Field & Nona Chiarello Design: Scott Shell, EHDD Architects PH Consultant: Graham Irwin Contractor: By owners

Poe Street

TEAM: Owners: Sally-Ann Rudd & Ronjon Nag Design: Fergus Garber Young PH Consultant: Pearl Renaker Contractor: Pete Moffat Construction

Mighty House

affordable detailed and detailed and option

TEAM: Owners: Siena Shaw & Brian Rubin Design & Construction: Dimension Style PH Consultant: owners The Mightshous, as an an excitating this is taking house travers, it is easily, meaning to set the transported stream as where, it is a set of the present intertation based on both the transported stream as where is a set of the present intertation based on the set of the traver is a set of the traver is a set of the of present set of the of present set of the of present the set of the of present set of the of present set of the of present set of the set

- And -	- Nething in Product Wolflage Carrier	n Histor	124	Metrix
ELECTRON CONTRACT	ficur:	H 31	11.10	825
Harden -	Walts:	8.21	# 33	11.26
	Rout	R28	01.10	8.32
ALC: NO.	Windows:	Ħ7-9	8.5.2	867
057059				

Bernstein Residence

TEAM: Owners: Stuart Bernstein Design: Fergus Garber Young Architects PH Consultant: Integral Impact Inc. Contractor: Smith Hyder Construction

Clarum Homes Office Building

Assemblies (IP units)

Roof (hr.ft2.F/BTU)

Floor/Slab (hr.ft2.F/BTU)

Overall Window (hr.ft2.F/BTU)

Exterior Walls (hr.ft2.F/BTU)

The Size Factor?

Certification Metrics

Warm Climate Summary

PH-related observations:

- Assemblies for all these projects had very similar U-values, despite size variation
- 2 certified via Heat Load criteria (surprising!)
- Showed PH allowed remarkable design & modeling flexibility

Non PH-related observations:

None of these projects have an attached garage

Thanks!

Many thanks to all for sharing their data on these projects.

Bronwyn Barry, CPHD Passive House BB
PASSIVE HOUSE TOOLS & TARGETS

PASSIVE HOUSE ENERGY

PASSIVE HOUSE TARGETS

Cooling Limits adjusted for Humid Climates:

City	kBTU/ft2.yr					
Madrid	4.75					
Melbourne	4.75					
New York	5.38					
Beijing	6.02					
Seaoul	6.02					
Austin	6.97					
Shanghai	7.6					
Miami	16.5					

THREE CERTIFICATION LEVELS

Energy Supply from Renewable Resources Final Energy Demand at the Building

INCENTIVIZES:

- 1. Total Demand Reduction & Peak Load Shifting
- 2. Fuel switching to all-electric with heat pumps
- 3. Regional renewable grid efficiencies
- 4. Allows local and off-site renewable credits
- 5. Seasonal storage of renewables at utility scale
- 6. Urban density & equitable renewable credit for all buildings

 $\textbf{SOURCE:} https://passipedia.org/certification/passive_house_categories/per\#the_per_sustainability_assessment$

Certified Passive House Buildings

Increased Efficiency + Renewable Generation on Site or Nearby

THE ENERGY MODEL: PHPP

What is PHPP?

- A numerical steady-state energy modeling spreadsheet
- Uses monthly climate data to quickly calculate detailed gains and losses for low-energy buildings
- Purpose built for low-energy buildings and Passive-House style buildings
- Excel spreadsheet based and low-cost

1	Indows	incla NH / TEA I	KOSE R ^a / Herei	eine: 5.84 ki00k	(Mert / Castina I	a second second	PER 11.55 volument								
Window ana prioritation Stansterd values -		Global radiation Bhading Dirt		Dirt 0.95	Nen-earlisel restation insidence 0.05	Glasting fraction	BHGC	Solar insolution reduction factor	Window seas	Window U-Value	Glasing area	Average global tailation		Yransmission losses heating period white	Heating (ester red beating (
	Nuth	14	0.56	0.95	0.85	0.58	0.50	0.26	155	0.20	90	14	Theret.	1642	281
East		33	0.79	0.95	0.65	0.63	0.50	0.40	155	0.19	98	41	East	1567	129
	Boath	62	0.81	0.95	0.85	0.74	0.50	0.49	506	0.17	376 40	59 34	South Man	4361 608	725
	Winat	34	0.81	0.95	0.85			6.41	64						
	Horlaomal	53	1.00	0.95	0.85	0.00	0.00	8.00	0	0.00	0	53	Harlandal	8	0
	Total or everyge volue for all windows.						0.50	0.43	880	0.18	604			8188	927
		0.000			1.5		5-0 E	Settimers.tet	Gin to an indice, the men. List						0.00
	Healing dagnee hours 7.640 'F dayly')		0		Window rough ops		Installed in	Glazing	Frank	g-Value	U-Vatue		W Glasing edge	and and and and T. R. and T. R. and	failation altur nonat usua for from Campona case of abutit
1 - 14	Description	Deviation from surth	Ange at instruction from the heritorner	Orien-Selier	Wath	Height	Selector For Aner'	Balaction From Componential worksheet	Selector from Companyoria' workehood	Parpen- dituder rediation	Gairy	Provine (evg.)	Pleasante (Arg.)	14 ayu	Bellam
		1.9				1		1-Borling: LHE LIET	Sert ALLET	1.00	SPUM S'Y	BILLIN ANT	10,000	17.0	etwite
	W104		88	East	3.00	4.00	4-WW, 8381, E	O'ted Triple-insulated 6/08	62ad \$80+Operates	8.98	8,73	8.19	8.018		
	WIDT		80	East	3.09	4.85	4-90vil (8101 E	21 with Trights incruitational #2/08	Wed \$102-Operative	6.98	8.11	8.19	6.018	1 1	1
	and the	-	and a	Fred	10.000	4.84	A STATE OF ALL A	The Party is should be	Added Bally Connection	0.00	0.44		0.040		

ENERGY BALANCE

$Q_{H} = Q_{T} + Q_{V} - [\eta \times (Q_{S} + Q_{I})]$

PHPP ROADMAP

GEOMETRY INPUT WITH DESIGNPH (SKETCHUP)

Climate: NY,New York Qh: 25 kWh/m³yr TFA 250 m³ (user-defined) FHLF 3.33

Source: Building-Type LLC, Passive House Consultants. Howie House. 2015

Update	windo	1.0, w opt	registe	Redr	o: edv aw wir	rinmay idows	L	negister	1				
ditor	Ass	emblie	Area	Com	U-val ponen	ue ts	Cir	nate					
Annu	al H	eat oat (Dena	nan nd	d		_			_			
Total heat losses (kWh/a) ga			l free h is (kW)	ieat l	Jtilisat facto	ion F	n Treated Floor Area (m ²)		Ann, Heat Demand (kWh/a)		Specific Deman	Ann. Heat Id, Q_h Vm*a)	
1275	3.67	6	634.95		0.98		250.48		6242.48		24	92	
Total Loss	Smis Heat Area	An U-v	heat a Wei alue (V	joss ghted Vim*K	Te	mp.	Ann. Htg Degree Hou (kKh)		ars He		amission at Loss (Wh(a)	Q_t (kWh/m*a)	
833	.41		0.20			88	70.10		10		0754.61	42.94	
Treat Floor	ilatio Area	vois (m	at los ation ime	Eff. exch ra	air ange te	Her cape of a	Heat Ar apacity Degr of air		in. Htg. ee Hours (kKh)		/entilation heat loss (kWh/a)	Q_v (kWh/m*a)	
250.48 626			20	0 0.1		0.3	.33 7		0.10		1999.06	7.98	
Group	r hea An Gro	t gai Is up	Win. area (m ¹)	Gi	lazing ta (m²)	g- value	Re	duction	Radiat G_	tion, s	Solar heat gain (kWh/a)	Q_s (kWh/m*a)	
2	2 North Windows		30.68	2	10,44	0.50		0.40	106.	70	660.46	2.64	
3	East Windows		9.62	8 3	5.31	0.50		0.33	279.40		449.64	1.80	
4	4 South Windows 5 West Windows		17.79	1	1.60	0.50		0.39	557.60		1958.43	7.82	
5			23.65	1	4.93	0.50		0.38	290	90	1315.51	5.25	
6	Horizo	ontal 0.00 ows			0.00						0.00	0.00	
			81.75	5 5	2.29	1	T			_	4384.05	17.50	
Treated Floor I Area (m') ga			t gain Internal heat gain rate (Wim')			Heatin perio		Hea per (kh	ting In tod gr		ernal heat in (KWh/a)	Q_i (kWh/m*a)	
-	1.40	-	2.1	0		178.3	0	4	28		2250.90	8.99	

ONLINE GUIDE TO

Building Certification Guide

How does the Platform work?

Airtight building envelope

Volume calculation

An excellent level of airtightness of the building

envelope is essential for low energy consump-

tion, thermal comfort and structural integrity,

therefore airtightness must be verified by

means of a measurement (known as the

Blower-Door-Test). For certification, a com-

pleted test report signed by the tester is to be

submitted (as a scan) which proves compliance

The airtightness measurement must be per-

formed in accordance with EN 13829 (Method

A). Alternatively, the measurement may also be

performed in accordance with ISO 9972

(Method 1). However, in this case the net air

volume according to EN 13829 must be used for

calculating the nurvalue. In deviation from the

norms, one series of measurements each for

positive pressure AND for negative pressure

10 1401

sure 2. Example of documentation of the volume

#-8 petter | 118 | 501 (617 181 Contractor 128

iculated separately for each soorn

with the limit value.

will be necessary.

The air volume Vn_{at} within the heated building envelope which is to be used for calculating the no air leakage value should be determined separately for each room. The calculation must be clearly documented in the report and should correspond to the value entered in the PHPP. The total air volume within the thermal envelope should be taken into account (including staircases). A more exect explanation of special features is given in Figure 1.

Regardless of the degree of completion of the building, the dimensions as at completion should always be used (e.g. If screed has not been applied). Volumes above suspended cellings do NOT count towards the air volume. This is irrespective of whether the ceiling already exists, is airtightly connected with the wall, or has various holes in it ("acoustic celling"). The reduction in the volume due to plaster layers does not have to be taken into account.

Figure 3: The volume of window reveals, doors and passages are not taken into account in the volume calculation.

The Dislogue Ber

the In the Versiliation section. Since on The one write them in the Dialogue Bar and cick on "Submitt" in the bottom of the paget.

sortaining the message on the Dialogue Bar.

ents made to the Checklist will not extomatically and a notification to the Besigner. This happens only when you write in the Dialogue Ser and cick "Submit?".

The Interactive Checklist

This is the place where you can uploof documents, and make comments on submitted data. If the information submitted by the Designer / Centilier is not complete or cornect / to-date, you can write a commant and /

Free to download! http://passiv.de/downloads/03_b uilding certification guide.pdf

1011

DETAILS ON HOW TO CERTIFY

Example plans

CLOSE OUT DOCUMENTS

- HVAC & electrical penetrations
- Airtightness test results
- Thermography If conducted
- Photographs taken during sequence inspections walls, air sealing, insulation,
- HVAC Data sheets w/ efficiency % and H/ERV commissioning
- Signed Passive House Declaration on PHPP
- Building user manual

CONGRATULATIONS!

With the methodology you have made a Passive House.

....but it's important to remember,

Define your Target!

Anything is Possible.