

October 4 th , 2016	 First reading of ordinances Public hearing (Passed unanimously)
October 24 th , 2016	Second reading of ordinanceSigned by council and filed with California
January 1 st , 2017	- Now effective

	New Single-Family Residential	New Multi-Family Residential
No PV	10% More efficient than Base Code	10% More efficient than Base Code
	(16.17.050.a.1)	(16.17.050.b.1)
With PV	20% More efficient than Base Code ¹	12% More efficient than Base Code¹
	(16.17.050.a.2)	(16.17.050.b.2)

	New Commercial
No PV	10% More efficient than Base Code
	(16.17.050.c.1)
With PV	Comply with minimum Base Code + Install a 5 kW or larger PV system
	(16.17.050.c.2)

NE Readiness Ordinance	
Questions?	
Upcoming Training Opportunities:	
Heat Pump Water Heater Workshop	
Mitchell Park Community Center	
Wednesday, May 24, 2017 from 3:00 to 6:00 PM (P	DT)
Palo Alto, CA	
Overview of Palo Alto's Current Green Building a Requirements	and Energy Reach Code
Palo Alto City Council Chambers	
Monday, June 5, 2017 from 12:00 PM to 1:00 PM (F	PDT)
Palo Alto, CA	,
Design Professionals Guide to Zero Net Energy Buildings - Slide 8	Falo Alto ZNE Training, May 23, 201

Today's Program Learning Objectives At the conclusion of this course, attendees will : 1. Have a basic understanding of the contribution of the North American building sector to greenhouse gas emissions 2. Be able to explain why increasing basic building energy efficiency is essential to achieving zero net energy 3. Be able to describe how building form and configuration and enclosure design, a prime area of responsibility for architects, can make possible deep reductions in the need for energy 4. Be able to site two building types that are the easiest to achieve ZNE, and two building types likely to require off-site renewable energy Falo Alto ZNE Training, May 23, 2017 ngs – Slide 10 Design Professi als Guide to Zero Net Energy B

	Pacific Coast	Warm and Dry	Hot and Humid	Warm and Humid	Cold and Dry	Cold and Humid	Artic
	(3c, 4c)	2b, 3b, 4b)	(1a, 2a)	(3a, 4a)	(5b, 6b)	(5a, 6a, 7)	(8)
Warehouses	34	20	23	40	53	65	161
Offices	58	62	69	69	69	77	126
Retail	101	86	99	114	122	142	249
Schools	70	59	71	78	77	91	165
Apartments	62	42	52	69	73	86	153
Hotels	122	99	119	126	126	134	151
Healthcare	232	202	232	242	218	238	281
Restaurants	558	497	522	569	598	660	965
Source: Design	Professionals	Guide to Zero	Net Energy E	Buildings,			

	Coast	Narm and Drv	Hot and Humid	Warm and Humid	Drv	Humid	Artic
		(2b, 3b,					
	(3c, 4c)	4b)	(1a, 2a)	(3a, 4a)	(5b, 6b)	(5a, 6a, 7)	(8)
Warehouses	16	15	12	17	20	26	33
Offices	22	31	33	32	31	34	41
Retail	35	49	48	50	53	59	81
Schools	35	46	49	47	48	50	68
Apartments	35	48	48	51	53	61	76
Office w/ Data Center	62	69	71	70	72	77	88
Hotels	57	75	80	78	77	83	100
Healthcare	101	108	117	116	111	120	140
Restaurants	360	431	414	471	513	574	759
		J					

			munnu	ниппа	Dry	Humid	Artic
	(0 - 4 -)	(2b, 3b,	(4 - 0 -)	(0- 4-)		(5- 0- 7)	(0)
A/	(3C, 4C)	40)	(1a, 2a)	(3a, 4a)	(00,00)	(5a, 6a, 7)	(8)
Varenouses	6	6	5	0	1	ð 44	12
Diffices	0	10	10	17	10	10	12
Schools	16	21	10	22	21	23	21
Anartmente	24	30	20	31	32	23	20
Apartments	4	47	47	44	47	J4 46	47
Jotels	40	47	47	51	51	40 54	58
	40	43	49		51	J4	70
Restaurants	265	323	324	336	343	353	377
l		J	Stud com cool	ly did no prehens king and	ot look a sive mea l refrige	at asures to ration ei	o redu nergy.

	Crientation	0. 111	10-111	20* 111	30* 111	40* 111	JU" TIL	4.012
warm and Dry	East	1,414	1,305	1,330	1,209	1,191	1,105	1,013
	Southeast	1,414	1,470	1,495	1,400	1,450	1,303	1,292
	South	1,414	1,518	1,581	1,605	1,594	1,540	1,451
	Southwest	1,414	1,490	1,545	1,500	1,537	1,403	1,399
	west	1,414	1,425	1,409	1,300	1,310	1,230	1,149
Pacific Coast	East	1.378	1.353	1.304	1.244	1.172	1.092	1.010
	Southeast	1,378	1,437	1,467	1,466	1,434	1,373	1,289
	South	1,378	1,485	1,553	1,582	1,571	1,523	1,436
	Southwest	1,378	1,464	1,518	1,534	1,518	1,466	1,389
	West	1,378	1,389	1,372	1,336	1,282	1,213	1,132
Source: P	V Watt Ca	liculati	ons					

	Pacific Coast	Warm and Dry	Hot and Humid	Warm and Humid	Cold and Dry	Cold and Humid	Artic
	(3c, 4c)	(2b, 3b, 4b)	(1a, 2a)	(3a, 4a)	(5b, 6b)	(5a, 6a, 7)	(8)
Horizontal Production (kWh/y)/kW (stc)	1,378	1,414	1,359	1,316	1,311	1,138	748
Horizontal Production	4,702	4,825	4,637	4,490	4,473	3,883	2,552
kBtu/ft²-y of Collector Area	72	74	71	69	69	60	39
Maximum s a one story covered wi	site EU / buildi ith PVs	l to achie ng with th	ve ZNE f ne roof	or			

Chapter 4 - Energy Modeling Methods of Assessing ZNE **Operational Assessment** Asset Assessment Based on utility bills Based on energy model Actual building operation Standard modeling assumptions Standard weather file Based on actual weather CEC uses TDV as metric DGS uses source energy Falo Alto ZNE Training, May 23, 2017 Design Professi Is Guide to Zero Net Energy E gs - Slide 48

British Thermal Unit (Btu)		kiloWatt-hour (kWh)		kiloJoule (kJ)
1 Btu	=	.000293 kWh	=	1.055 kJ
3,412 Btu	=	1 kWh	=	3,600 kJ
0.948 Btu	=	.000278 kWh	=	1 kJ

Energy Type	Source Multiplier	Common Units	Site Btu / unit	Source Btu / uni
Imported Electricity	3.15	kWh	3,412	10,751
Exported Renewable Electricity	3.15	kWh	3,412	10,751
Natural Gas	1.09	Therms	100,000	109,000
Fuel Oil (1,2,4,5,6,Diesel, Kerosene)	1.19	Gallons	138,000	164,220
Propane & Liquid Propane	1.15	Gallons	91,000	104,650
Steam	1.45	lb	1,000	1,450
Hot Water	1.35	millions Btu	1,000,000	1,350,000
Chilled Water	1.04	millions Btu	1,000,000	1,040,000
Coal or Other	1.05	short ton	19,210,000	20,170,000
Notes: The Btu per Ib of steam will va	ry depending on I	and ASHRA	is superheated.	105

Comparison of Me	trics		
	All Electric Buildings	Mixed Fuel Buildings	
Site Energy		Most difficult to achieve ZNE	
Source Energy (recommended)	ergy (recommended) Equal difficulty in achieving ZNE		
Energy Cost (flat rate)			
TDV or Energy Cost (time-of-use)	Used to be the easiest to achi	eve ZNE, but this is changing	

1	On-Site Test	The Zero Net-Energy Criteria
ſ	Q _{Delivered} – Q _{Exported}	 ≤ 0
Description	Basic definition of on-site zero net- energy building	
Additionality	New renewable energy is added as part of the construction project	
unding	Capital Improvement Budget	

 Cap and Trade Carbon Taxes Subsidizing Renewable Energy Reducing Subsidies for Fossil Fuels Labeling Programs and Mandatory Disclosure Recognition Programs LEED Zero Energy Building Certification (LBC) New Buildings Institute Verified Zero Energy Buildings List 	 EPA estimates that the cost of carbon emissions is about \$60/ton, which would cause electricity to increase by \$0.037/kWh Harvard Medical School study estimates externalities from coal would cause electricity to increase an average of \$0.18/kWh
---	--

Chapter 7 - ZNE for the Mainstream

California is getting so much power from solar that wholesale electricity prices are turning negative

