Stanford University Medical Center

Mark Tortorich
Vice President
Stanford University Medical Center
Planning, Design & Construction

Elizabeth Chaney
Director, Real Estate Planning & Development
Stanford University Medical Center
Planning, Design & Construction

Zach Pozner
Project Manager
Stanford University Medical Center
Planning, Design & Construction

George Tingwald MD
SHC Director of Medical Planning
Stanford University Medical Center
Planning, Design & Construction

Niraj Dangoria
Assistant Dean
Stanford University Medical Center
Office of Facilities Planning and Management

Stanford University - Land, Buildings & Real Estate

Bob Reidy
Vice President
Stanford University
Land, Buildings and Real Estate

Bill Phillips
Senior Associate Vice President
Stanford University
Land, Buildings and Real Estate

Jack Cleary
Associate Vice President
Stanford University
Department of Project Management

Charles Carter
Director
Stanford University
Land Use and Environmental Planning

David Lenox
University Architect / Director
Stanford University
University Architect / Campus Planning and Design

Cathy Blake
Assistant Director
Stanford University
University Architect / Campus Planning and Design

Design Teams

Rafael Viñoly Architects / Lee, Burkhart, Liu, Inc.
Stanford Hospital & Clinics
Stanford Replacement Hospital

Perkins & Will / HGA Architects and Engineers
Lucile Packard Children’s Hospital
LPCH Phase 2 Expansion Project

Zimmer Gunsul Frasca Architects
Stanford University - School of Medicine
Foundations in Medicine Buildings 1, 2 & 3

WRNS Studio LLP
Hoover Site Development
MOB and Parking Structure

Design Guidelines

WRNS Studio LLP
Table of Contents

I. Introduction
- A. Executive Summary .. 1
- B. Zoning & Land Use .. 6
- C. Planning Principles .. 8

II. Site Design
- A. Site Design, Main Circulation & Parking 15
- B. Public Access Streets .. 18
- C. Open Spaces .. 26
- D. Pathways .. 47

III. Building Design
- A. Visual Hierarchy ... 53
- B. Density Pattern & Context ... 58
- C. Massing & Building Composition 64
- D. Material Palette .. 82
- E. Entry Expression .. 90

IV. Connective Elements
- A. Paving ... 101
- B. Planting ... 110
- C. Lighting ... 121
- D. Signage ... 129
- E. Shared Amenities .. 131

V. Appendix
- A. Hoover Pavilion Historic Preservation Approach 143
- B. SHC Clinics ... 153
I. Introduction

“Let us not be afraid to outgrow old thoughts and ways and dare to think on new lines as to the future work under our care.”

~ Jane Stanford
A. Executive Summary

The Stanford University Medical Center (SUMC) is one of the world’s most renowned centers of research, patient care and translational medicine. The SUMC’s Strategic Plan—driven by the exigencies of California Senate Bill 1953—endeavors to add and/or replace more than 2.5 million square feet of construction over the next 20 years, including hospital, clinical, medical office, and research facilities. It will also add more than 3,000 parking spaces. The scale of this new development will dramatically transform the character of the medical campus and offer an unprecedented opportunity for the new projects to establish a new benchmark of medical care and service for the SUMC.

The SUMC Steering Committee commissioned the Medical Center Design Guidelines to provide a basis from which to understand the architectural implications of new projects within the four districts that make up the medical center. While each of the districts within the medical center has a distinct identity, the guidelines express similarities and differences of the new projects as they contribute to a cohesive Medical Center identity. To that end, the Medical Center Design Guidelines seek to provide consistent and equal representation of all the new projects for City of Palo Alto review. The intent of the guidelines is to allow for a variety of architectural expressions in the proposed projects while promoting a cohesive campus environment, with enhanced connections to Stanford University and to the Stanford Shopping Center.

The Medical Center Design Guidelines is a working document. This draft of the guidelines augments the SUMC Area Plan and SUMC Facilities Renewal and Replacement Project Application already submitted to the City of Palo Alto, and builds upon the following campus planning principles, goals, and objectives:

- To reinforce the unique character of the SUMC with respect to the City structure and to Stanford University
- To establish a unified center while maintaining the unique identity of each institution
- To promote a sense of security through attentiveness to personal and public safety
- To create a sense of welcome to the broad community of Medical Center users
- To enhance connectivity to all modes of travel and transit
- To design for efficiency in land use and other resources
- To plan for adaptability to new medical, research, and infrastructural technologies
A. Executive Summary

Design Guideline Structure

The Medical Center Design Guidelines build upon the goals, principles, and programs proposed in the SUMC Area Plan and SUMC Facilities Renewal and Replacement Project Application. It does not simply restate information already proposed, but rather presents this information in a more qualitative format. Recognizing that the Stanford University campus, like many campus environments, owes its character to the unique arrangement of its buildings, common open space, and connective elements, the Medical Center Design Guidelines is organized into these three basic sections: Site Design, Building Design, and Connective Elements. Each section contains guidelines that establish concepts and considerations for new projects by presenting examples of typical patterns, design techniques and/or planning principles taken from the larger context. These guidelines highlight specific features of the new projects with respect to important values, design context and architectural image.

In any given section the guideline format reinforces each district as a distinct identity within the Medical Center, and demonstrates the roles each new projects plays in creating a unified campus. Guideline topics progress from the general toward the specific and cover the districts in the following order:

- Pasteur Mall District, which contains Stanford Hospital and Clinics (SHC)
- Lucile Packard Children’s Hospital District (LPCH)
- School of Medicine District (SoM)
- Quarry Corridor District / Hoover Pavilion Site
A. Executive Summary

Historical Context, Interpretation and Identity

The overall character of the Stanford University Campus is attributable to the design of the original buildings by Charles Allerton Coolidge, and their relationships to the landscape designed by Frederick Law Olmsted. The blend of Romanesque and Mission architectural styles posited by Coolidge—together with the sublime combination of formal quads, palm tree-lined axis, and naturalist landscape conceived by Olmsted—create the campus’ unique physical character. These relationships combine with the predominant materials of earth-toned sandstone and red-tile roofs to form the archetypal image we all carry in our “mind’s eye” of the Stanford University environment. They are the building blocks of the “Stanford University Identity.”

The context of the Medical Center is dominated by the existing Stanford Hospital and Clinics building. The design is a contemporary interpretation of the historic recipe for buildings around the Main Quad. The scale of the facility, the axial plan, and its connection to the outdoors with its network of courtyards, link it to the Stanford University image.

What is especially important to the new Medical Center is that, in 1959, the architecture had established a separate character for the SUMC—one which is distinct yet still related to the architectural identity of the main campus. This step away from a prescribed approach to architectural design was necessary because of the increased size, scale, and complexity of the hospital’s program—which is unique to a medical facility and fundamentally different from an academic building.

The spirit of this modern interpretation is apparent in many of the new buildings in the SUMC and SoM. Over time newer buildings sought taller, more efficient building masses to accommodate the functional demands of more advanced technologies and Office of Statewide Health Planning and Development (OSHPD) requirements. New architectural expressions such as CCSR and Clark Center at the SoM have even more distinct characteristics tending toward the abundant use of glass and metal, in place of the more massive physiognomy of the older buildings. While the original medical center complex has served its function well in the past, it has become increasingly problematic over for the building to service the needs of the SHC and SoM—because of its’ physical limitations and the demands of state-of-the-art patient care and medical research technologies.
A. Executive Summary

State-of-the-Art Healthcare Design

The structure of the Medical Center Design Guidelines underscores an interpretive approach to contextual design. This approach is based on a realization that new projects must participate in a world of healthcare design that is highly technological, publicly engaging, and critical to patient care and life-safety. This positions the task of planning and designing for the SUMC in a manner that is functionally and aesthetically different from both the academic side of Stanford University and the commercial side of the City of Palo Alto. The scope of this effort affords a unique opportunity to evolve a new image for the Medical Campus while fostering integration with existing facilities, medical and research goals, and enhancing operational and environmental efficiencies.

Over the last few decades the program, space requirements, and technical infrastructure for medical facilities have dramatically changed. In addition, legislation such as California Senate Bill 1953, along with stringent new code requirements for seismic design and mechanical systems, are requiring that aging facilities in each district of the SUMC be renovated, expanded, or replaced. Modernized concepts of optimal hospital planning are one of the areas that has changed most dramatically since the existing Medical Center was built. Safe and efficient hospital design is now arranging program vertically with the patient rooms stacked on top of operating rooms, over the emergency department and other diagnostic and/or treatment areas. This vertical organization provides increased circulatory efficiency which leads to a higher level of patient service and safety, and shall be the basis for the design of the new hospital.

Other demands and developments in healthcare design have rendered facilities of SUMC undersized and out of compliance with contemporary building code and industry practice standards. For example, since its inception nearly fifty years ago the area required to service SUMC’s inpatient beds has more than doubled. Along with the increased demand for inpatient services, the demand for outpatient services has increased even more rapidly. This is caused by advances in medical delivery technologies, and the advent of multiple procedures that require periodic monitoring and specialized treatment over time. Additionally, there are under-served needs of the SUMC that are particular to its role as a translational research facility for the SoM. The SUMC’s role as a joint teaching hospital with a strong relationship to Palo Alto Community Hospital, and its role within Santa Clara County as a regional Trauma Center make it imperative that the new hospital projects be designed to enhance and modernize the following primary relationships:

- To adequately serve the growing local constituency
- To meet current hospital planning standards (AIA Healthcare Guidelines)
- To support contemporary translational research with the SoM
- To provide for Level 1 Trauma Center requirements for the County
- To serve community healthcare provider relationships (e.g. Welch Road & Hoover Site) within the City
- To meet current hospital building codes and practice requirements
A. Executive Summary

SUMC Main Features
The SUMC is comprised of four main districts, each with its own distinct institutional identity. The sites of the SUMC lie on the north and western edges of the Stanford University campus. These outlying areas of the Arboretum had been maintained as part of the Palo Alto Stock Farm until the 1930s, when Hoover Pavilion was built as the home of Palo Alto Hospital. Later, to the south down Quarry Road, the SHC was built in 1959 as a modern joint teaching and community hospital for Stanford University and the City of Palo Alto. SHC still occupies the largest, most central position of the SUMC today.

In the future, the new SHC will have enhanced physical connections to the expansion of LPCH to the north, and the new SoM buildings lining Pasteur Mall to the south. Although the Hoover Pavilion site is physically detached from the main medical campus, its connection to the SUMC will be enhanced through improvements along the main arteries of Quarry and Welch Roads. Both of these sites maintain a visual connection to the rural qualities of the Arboretum along their eastern edges, and to the commercial qualities of the Shopping Center along their northern and western edges. The position of the Hoover Site also provides a valuable link to downtown Palo Alto, and can act as a bridge between the heart of campus, and the city.

SUMC is organized around a few main features which inform the basis of more detailed study in the design guidelines. Each of the districts is bound to the west by a commercial edge along Quarry and Welch Roads, and to the east by the Arboretum. The series of new SoM buildings that will line Pasteur Drive will create a porous boundary with distinct gateway connections between the SoM and the hospital.

Formal and axial open spaces become main orienting features for arrival, departure, and internal circulation patterns. This is clearly established on the Stanford University campus by the intersection of Pasteur Drive and Serra Mall as the main formal open space serving various modes of passenger transit. At SUMC the "Promenade" functions as the main pedestrian spine connecting SHC, LPCH, and SoM. The placement of new buildings around these main features establish view corridors – such as the visual connection of Pasteur Drive to Roth Way – that enhance connections between SUMC and the academic side of the Stanford University campus. Similarly, the new development at the Hoover Pavilion Site organizes the new medical office building (MOB) and parking structure around new common open spaces to revitalize and activate the edges of the existing building.
B. Zoning & Land Use

A thoughtful, well-planned configuration of uses and programmatic elements of SUMC can promote desired patterns of interaction and activity. The scale of the new development affords a unique opportunity to establish new connections and reinforce existing ones.

While the proposed projects are consistent with permitted uses, they include structures that are larger in area and taller in height than current limits set for the PF Zone. The SUMC Facilities Renewal and Replacement Project Application has itemized specific modifications to the City’s development standards to propose increases in allowable FAR, lot coverage, and building height for specific buildings within each district. These modifications are proposed where deemed beneficial to stated goals and objectives. The Medical Center Design Guidelines serve to delineate those changes as performance-based criteria for specifically proposed building patterns, locations, and configurations in lieu of overall ratios or limits set for the entire zone. Similarly, standards for the parking are proposed to be performance-based in lieu of an overall ratio.

The idea of performance-based planning criteria is linked to overarching planning goals, qualitative programmatic adjacencies, and land use priorities.
Introduction

B. Zoning & Land Use

District Renewal and Replacement Goals

Pasteur Mall District: As outlined in the SUMC Facilities Renewal and Replacement Project Application for the Pasteur Mall District, it is the intent of the University to add more than 800,000 GSF of new construction to SHC. This major construction process includes replacement of portions of the original medical center complex, which also involves coordinating the addition of three academic research buildings in the SoM, and accommodation for almost 2,000 new underground parking spaces. The new SHC will be the largest component of the revitalized Medical Center.

LPCH District: The University intends to add more than 400,000 GSF of new medical facilities for LPCH and 725 parking spaces in the next five to ten years. The LPCH expansion involves significant remodeling and conversion of the existing facilities, and demolition of two Welch Road structures occupied by non-Stanford community health providers.

SoM District: The SoM intends to replace the 415,000 GSF in the Grant, Alway, Lane and Edwards Buildings with three new research-intensive buildings. These new buildings will feature wet lab research space and ancillary support spaces that will better accommodate contemporary research needs than the outdated facilities. The design of these buildings will feature a modular approach; allowing greater flexibility in accommodating evolving research requirements in scale and technical criteria. The buildings, while an integral part of the SUMC also need to reflect characteristics of the SoM campus (to the South). The construction of the new buildings must occur sequentially in order to accommodate continual operations in the SoM throughout the process.*

Quarry Corridor District (Hoover Pavilion Site): The University plans to add approximately 60,000 GSF to the area around Hoover Pavilion to support medical office and clinical practices relocated from Welch Road facilities to be demolished. The new buildings involve the creation of a revitalized common open space, and the addition of more than 1,000 parking spaces in a structured parking garage.

Program Summary

SUMC is an evolving entity that provides a multilayered framework for complex social and physical interactions. The SUMC Facilities Renewal and Replacement Project Application has provided a preliminary assessment of space needs by district. District space needs fall into five general categories:

- Research / Instruction
- In-Patient Hospital
- Out-Patient Medical Clinics and Offices
- Support Space
- Parking
C. Planning Principles

There are four main planning principles that govern the organization and character of buildings and open space SUMC: Visibility, Hierarchy, Connectivity, and Context. These four principles work together to create a cohesive campus structure for the Medical Center while fostering a unique identity for each of the individual institutions within its districts.
C. Planning Principles

Visibility

Visibility is a primary planning principle for SUMC to ensure a safe and secure environment, and also to promote environmental legibility, way-finding, and institutional identity on the Medical Campus. Large formal open spaces create front yards to main campus gateways and entry points. These main entry points are scaled for arrival by car, bus, shuttle or ambulance, and will also be configured with human-scaled elements to serve as orienting features for pedestrian use.

Primary entrances to each of the institutions will be located adjacent to large formal open spaces. These yards provide sightlines and focal points to establish visibility and connectivity, both within the campus and to visitors as they approach. This is both a life safety and security consideration as well as a qualitative value that contributes to the unique character and identity of the Medical Campus as a whole. Planting schemes will be designed to enhance the visibility of each project as well as the cohesive campus identity.
C. Planning Principles

Hierarchy (and Balance)

Hierarchy is established by balancing the different scales of the new buildings in their relationships to each other. The density pattern of SUMC shall be weighted toward the center with the new hospital occupying the primary position as the tallest, most prominent portion of the campus. LPCH and the SoM buildings assume supporting roles defining the edges of the districts, building gradually toward the center. The Hoover Site employs the same techniques of balancing new and existing buildings.

This concentric organization of density is balanced by graduating the height of adjacent buildings and providing interspersed open space where feasible to create a series of intimate courtyards -- break down mass, and relate to the Main Quad in terms of use.

[Diagram showing relative density and hierarchy diagram representing concentric rings of density on campus]
C. Planning Principles

Connectivity

Connectivity is the physical and visual linking of buildings and open spaces to promote a cohesive campus environment. A series of common open spaces, including formal and axial open spaces linked to more intimate courtyards and gardens, serve to physically connect buildings throughout the campus.

Entry plazas, pedestrian streets, and passages are the formal and axial open spaces that provide connective tissue between districts, and offer continuous view corridors. Intimate open spaces, such as courtyards and gardens, are situated adjacent these larger formal and axial open spaces. Standards for Connective Elements such as common material palettes, colors and paving patterns, consistent planting schemes, and other shared amenities (benches, receptacles, signage, information kiosks) serve to orient the public and pedestrians along pathways to specific campus destinations.
C. Planning Principles

Context
Integration of new buildings within SUMC and the larger context of the Stanford University campus, commercial core, and City of Palo Alto is established by principles of interpretive design, compositional massing, and building articulation. The consistent use of specific materials and standards for trees, plantings, paving, and lighting add to the collective image that defines the character of Stanford University and SUMC.

One of the strongest contextual devices in campus planning is the consistent use of a campus palette of shared building materials and colors which serves to visually link the different types of buildings and open spaces to each other.

![traditional split-faced limestone](image)

modern interpretation in precast

contemporary use of stone finish

range of earth-toned color palette on campus

<table>
<thead>
<tr>
<th>DS 19-8 C</th>
<th>DS 30-6 C</th>
<th>DS 48-4 C</th>
<th>DS 63-1 C</th>
<th>DS 324-1 C</th>
<th>DS 327-2 C</th>
<th>DS 325-7 C</th>
</tr>
</thead>
</table>

DS 30-6 C DS 48-4 C DS 63-1 C DS 324-1 C DS 327-2 C DS 325-7 C DS 325-7 C
II. Site Design

Site design at Stanford University starts with the formation of open space, proceeds to the landscape, and then to the buildings. These design guidelines establish design principles for the use of open space and circulation of SUMC to produce a cohesive campus identity.
A. Site Design, Main Circulation & Parking

Overall Strategies
The site design concept for SUMC builds upon existing patterns of pedestrian and vehicular circulation, and parking. This guideline section shows how existing circulation patterns are extended and/or enhanced in the new projects to establish site design and master planning objectives for the SUMC, Hoover Site, and Welch/Quarry Corridor.

The annotated master plan identifies areas of study that contain opportunities for urban placemaking, establishing landscape identity, and/or reinforcing connections within SUMC to outer areas of Stanford University and Stanford Shopping Center. These areas are shown in more detail (and at larger scale) in the Open Space section. It is important to note that these plans and sections are purely illustrative and conceptual in nature, and the actual spacing, placement, and configuration of connective elements (street trees, paving, lighting, signage) shall be dependant upon the final design of the street improvements.
A. Site Design, Main Circulation & Parking

Context
The master plan illustrates the idea that site design begins at the edge of the public streets along Welch and Quarry Roads. The character of these streets is informed by the office and commercial uses on the Stanford Shopping Center side and the larger-scaled, more institutional buildings on the SUMC side.

The master plan diagram identifies main circulation routes for pedestrians, bicycles and vehicles, as well as connections along and across these public streets. The intent is provide clear paths of travel for the different modes of transit and them at street crossings and other points of confluence to ensure these elements link SUMC to the academic campus, downtown, and the multi-modal transit center (Caltrain) in a clear and safe manner.

An often overlooked mode of circulation is the bicycle, which plays an especially important role on the Stanford University Campus. Bicycle traffic routinely mingles with pedestrian pathways and/or with vehicular traffic on city streets, but rarely all together. Bicycle traffic on the Medical Campus is intended to remain around the periphery of the site, and pass through only along the Pasteur Drive / Roth Way axis, and along Governor’s Avenue. The Promenade is a pedestrian-only zone.
A. Site Design, Main Circulation & Parking

Parking and Traffic
Parking and Traffic Circulation patterns at Stanford University are a critical part of the site planning and land use objectives. Site design shall organize the flow of traffic to minimize conflicts between pedestrians, vehicles, and open space. This objective is especially important on the Medical Campus – where patient transportation is by car and emergency care is provided on a 24-hour basis.

Garage safety and security is a primary concern since this is where most of the medical campus users will leave their vehicles. Garage design shall incorporate features that maximize passive security such as increased lighting levels, visibility, and elimination of dark corners and confined spaces. Parking structures shall be designed to be visually integrated with the other types of buildings on the campus. Special attention shall be given to massing and articulation to ensure parking structures do not dominate any particular open space or street edge. Similarly special attention shall be given to underground garages to ensure the entrance ramps are integrated into site design and are not disruptive to circulation patterns and objectives.

The new parking structure at the Hoover Site is intended to serve the new medical office campus at the Hoover site as well as employee parking needs on the main medical campus. Hoover Garage shall be designed with regard to the composition of the existing and new buildings on site.
B. Public Access Streets

Overall Strategies

This guideline seeks to establish principles for improvements on Quarry and Welch Roads that are consistent with the long-range goals of SUMC and Stanford University, while also taking into consideration the future plans for the Stanford Shopping Center and the City of Palo Alto.

The character of the Welch and Quarry Corridors is informed by the office and commercial uses of the Stanford Shopping Center side to the west, and the institutionally scaled buildings on the SUMC side to the east. The character of these corridors will also be shaped by future development along these streets. The renewal and expansion plans of both SUMC and Stanford Shopping Center will impose a more structured streetscape that will demand mature, planted areas appropriately scaled to the new projects.

The following typical plans and street sections for the Welch and Quarry Corridors express a desire to separate pedestrian, bicycle, and vehicular traffic, embellish the character of these streets with consistent standards of “connective elements” – such as street trees, lighting, open space setbacks, medians, and enhanced paving – and consolidate street crossings into safe and “designed experiences”. This guideline section promotes a layered approach to planting where consistently spaced street trees structure the street edges, with strip of less formal, more naturalist planting patterns of often larger (Arboretum-like) trees behind.

The exact spacing and scale of trees on each street will be determined in the detailed design phases, and in coordination with the City of Palo Alto. Final spacing of street trees will depend on the species and characteristic spread of the trees canopy. It is important that the street tree selection accommodates visibility, and that some sunlight will reach the sidewalks between the trees, but also that the spacing is large enough to encourage full canopy growth and that the tree species selected are appropriate in scale to the width of the street.
B. Public Access Streets

Quarry Corridor
The Quarry Corridor centers on Quarry Road with the Shopping Center lining the west side, and a mixture of City and Stanford Campus properties to the east. At four lanes with a median down the middle, the character of Quarry Road is that of a traffic-dominated arterial. However it leads to a main entry point to the campus at the intersection with Welch. Recent improvements to the street have attempted to posit a more consistent planting pattern with green areas on both sides, but the establishment of the street trees has been slow and inconsistent -- due to incorrect species selection, spacing, and/or other technical issues. Additionally, yards fronting the street on the east side vary in depth and have differing landscaping and parking standards that further contribute to a lack of cohesion.

The proposed improvements to the Quarry Corridor are intended to elevate the character of the street to that of a “Tree-lined Boulevard” which is more in keeping with the future plans of the SUMC, Stanford Campus to the east, as well as the Shopping Center to the west. The single, most effective way to achieve this is through the design and implementation of a “treescape” that will encourage large tree-canopy growth.

It is also desirable to contrast the more commercial character of Quarry with that of the Arboretum edge of campus to serve the creation of a “landscape gateway” at the Welch/Quarry intersection. The Quarry Corridor will remain predominantly a vehicular street that will maintain a 20’ open space setback on the Campus side (east) for structuring future development and pedestrian circulation.
B. Public Access Streets
Quarry Corridor @ Sweet Olive Way

The existing intersection at Quarry Road and Sweet Olive Way is an underutilized amenity on Quarry Road. The planned improvements to the Hoover Site are proposed to take advantage of this intersection as a main pedestrian and vehicular entry point into the new Hoover Garage. The new garage shall be designed to also encourage pedestrian connection to the Shopping Center across Quarry Road. Streetscape improvements (such as enhanced paving, pedestrian lighting, and site furnishings) shall be configured to enhance entry points into the site.
II

Stanford University Medical Center Campus Design Guidelines

Site Design

60’ max

10’ Min.

Setback

Sidewalk

Planting Strip

28’ Quarry Road

13’ Median

28’ Quarry Road

10’ Sidewalk

10’ Min. Setback

Structured Parking

B. Public Access Streets

Quarry Corridor @ Sweet Olive Way

A. typical street section @ north end of Quarry Road
B. Public Access Streets

Welch Corridor
The Welch Corridor centers on Welch Road with the SUMC on the south side and low commercial buildings — mostly medical offices — on the north side. The somewhat suburban character of Welch Road is imparted by the broad, informally planted green spaces on both sides of this two-laned street. The planting patterns along Welch are informal and inconsistent in scale, density, spacing and tree species, suggesting a lack of any overarching standards for the street. Yards fronting the street vary in depth, and there are multiple points of access, and differing standards for parking and planting between the buildings and the street, all contributing to a “privatized look”.

The proposed improvements to the Welch Corridor are intended to preserve the character of an intimately scaled, tree-lined street, but one that is more in keeping with the future plans of the SHC and LPCH projects, as well as the Shopping Center improvements to the north. The addition of consistently planted street trees and the reduction/consolidation of the curb-cuts and crosswalks are preferable in order to create a safe and coherent streetscape. At campus entry points or major new buildings — such as LPCH expansion and/or SHC — the street tree planting pattern shall be broken to emphasize the featured facility.
Welch Road is currently configured as a two-lane roadway with bicycle lanes. In the section from Quarry Road to Pasteur Drive, there is only one existing left turn pocket provided at the entrance to the Lucille Packard Children’s Hospital driveway. Due to the numerous driveways along this section of Welch Road, left turning vehicles often block the flow of traffic in the through lanes which creates congestion and queues. The proposed improvements for Welch Road will widen the roadway to a three lane cross-section, with bicycle lanes, from Quarry Road to Pasteur Drive. The additional lane will allow for one through lane in each direction and a two-way left-turn lane, allowing left-turning vehicles to move out of the through lanes, thereby decreasing delay in the corridor.
B. Public Access Streets

Durand Way

Durand Way is a proposed new street connecting Welch Road to Sand Hill Road. The new Durand Way will facilitate a new un-congested route for emergency vehicles to the SHC coming from, and departing to, Sand Hill Road. The new street also provides access to outer Welch MOB’s, Blake Wilbur, the AMC, and better services existing pedestrian and bicycle routes traveling both directions. It is anticipated this street will serve to connect residential and pedestrian populations in Menlo Park, as well as bicyclists utilizing Governor’s Avenue.

The street section of the new Durand Way will have the characteristic layering of the street trees, and less formal plantings – appropriately-scaled to serve as a connector to Welch Road.
B. Public Access Streets

Durand Way

Existing Offices

42'

20' Min. Setback

5' Bike Ln

5' Sidewalk

Planting Strip

Durand Way

42'

20' Min. Setback

5' Bike Ln

5' Sidewalk

Planting Strip

Proposed 800 Welch Rd.

42'

B. section of proposed Durand Way
C. Open Spaces

This Guideline section establishes the zones for the planning of specific types of open space within the SUMC. The deployment of open space typologies is designed to optimize site planning objectives.

The character of Stanford's open space is principled on a variety of major and minor open space types, established by the Olmsted Master Plan, to create its landscape identity. The four main open space types -- still in service today as planning principles for the new projects -- are inseparable from the architecture, and differ in character according to the role they play in the campus context: 1) The Arboretum which provides a large naturalistic buffer around campus and gives the campus its' rural qualities; 2) large Formal Open Spaces -- such as the Oval, or Pasteur Mall -- which create front yards for the grand entries to the campus; 3) Axial Open Space structures -- such Serra Mall, or the new Promenade -- which establish circulatory hierarchy and connect across the Districts; 4) Intimate Open Spaces in form of courtyards and gardens that lend uniqueness and identity to specific destinations.

Additionally tree-lined streets, pathways and street frontages -- such as those along Welch and Quarry Roads -- are more specifically discussed in "Public Access Streets" section of the guidelines.

As the following diagrams show, there are specific locations for each of these open space types in each of the Districts, and utilization of these open space types shall serve to physically connect the SUMC districts to the public perimeter, as well as to each other. The use of open spaces shall also connect the SUMC visually to the Stanford landscape identity.
C. Open Spaces

Arboretum

The Arboretum is a 19th century landscape typical of groves planted on a San Francisco Peninsula estate. It is dominated by generous groves of native live oak trees and (non-native) eucalyptus, but also olives, cedars, and pines with grasses and mulch underneath. The Arboretum open space is the single most important element giving Stanford a connection to its rural character, and recalling its origins as "The Farm". Where large oaks drift through areas of campus, they impart the humble, yet majestic character of the Arboretum.

- extend the character of Arboretum-like planting across toward LPCH to create a symbolic "landscape gateway" to campus
- acknowledge the edge of the Arboretum as Arboretum Walk with a linked pedestrian / bike connection to the transit center and City of Palo Alto (see Stanford University Arboretum Master Plan)
- use Arboretum-like planting symbolically where appropriate as a visual amenity
C. Open Spaces
Landscape Gateway

The landscape gateway to campus is established by the density of Arboretum trees planted across Quarry at the intersection with Welch Road. The intent is to create a visual contrast between the regimented "boulevard-like" street-tree pattern of trees on Quarry with the more majestic, yet informal planting pattern of campus. The larger trees also help balance the scale of LPCH at this prominent corner.

A. view looking south toward LPCH from Quarry Road
C. Open Spaces

Landscape Gateway

B. section thru Landscape Gateway showing arboretum-type trees bridging across Quarry Road to new LPCH expansion
The Olmsted Plan uses formal open space to create nodes of interest and drama around important intersections of the master plan. The Oval on Palm Drive is the quintessential formal open space that is fancifully planted with geometric arcs of palm trees, which stand in stark, orderly contrast to the naturalist Arboretum. There are manicured lawns and gardens, such as the front yard of Hoover Pavilion that also fall into this category. Historically, Pasteur Mall has performed a similar role for the SUMC, however due to the disengaged construction lining the Mall that has emerged over the years, the experience on Pasteur Drive no doesn’t live up to the grandeur it was intended to have.

- future development shall be responsive to the following goals: Pasteur Mall will establish a “front yard” appropriately scaled to the SHC
- use the aspects of formal open space scaled to enhance the new SHC and LPCH entry zones
- establish clear open space structures leading to primary entries to and from Welch Road
- establish clear and identifiable pedestrian/bicycle routes to, from, and through Pasteur Mall
C. Open Spaces

Pasteur Mall

The position of the new SHC on Pasteur Mall re-purposes the Mall from its original role as that of a processional axis to a singular institution, to that of a less formal “front yard” for the hospital and clinics. In so doing the new Pasteur Mall presents a broad array of possible fronts -- linking a series of entry points and experiences – leading to the SHC courtyard. This concept is predicated on enhancing the landscaping over the underground garage at the entry of the site, and adding street trees to emphasize the visual connection to Roth Way. This concept has multiple benefits:

- less vehicular traffic in center of campus
- clearer perception of the “Front Door” to campus
- helps establish new distinct boundary between SHC and SoM
- brings in-patient environment in close proximity to outer Welch out-patient components
C. Open Spaces

Pasteur Mall

A. section thru Pasteur Mall

SHC Replacement Hospital

130' max

30' Covered Walkway
10' Drop-off
25' Pasteur Drive
180' Pasteur Mall

Sidewalk 6'
C. Open Spaces

LPCH / Shopping Center Connection

The open space setback in front of the new LPCH expansion provides for a terraced landscape interlacing vehicular entry points, drop-off, and turn-around into a sculpted landscape feature that appropriately addresses the street, while at the same time, providing “defensible space” for the main entry of LPCH. This goal shall be appropriately managed by a layered approach of planting, land berming, and the use of natural material for the (curvilinear) retaining walls facing the street. This “landscape feature” leads to a consolidated street crossing that connects to the central promenade both on campus, and through the Shopping Center.
C. Open Spaces

LPCH / Shopping Center Connection

A. section thru Welch Road showing elevated entry of proposed LPCH

Proposed Addition to LPCH

20' Entry Plaza

70' Circular Driveway

10' Min Setback

5' Planting Strip

5' Bike Ln

4' Median

34' Bike Ln

40' Welch Road

5' Planting Strip

5' Sidewalk

50' Setback

“The Barn”
C. Open Spaces
Hoover Entry Lawn

The existing oval-shaped entry lawn at the Hoover site has played an important role honoring Hoover Pavilion. This historical site feature shall be retained as part of the formal entry sequence to the site. The entry lawn is positioned adjacent the new main circulation spine, running north-south, that leads into the new Hoover Garage.

The proposed new structures around Hoover Pavilion shall be sited to further enframe the open spaces and views around this potentially historic structure. A “protected view shed” has been established at the northwest corner of the site to preserve the prominence of Hoover Pavilion from this and other viewpoints around the site.
C. Open Spaces

Hoover Entry Lawn

B. section of Hoover front yard extending from Hoover Pavilion across Palo Road and into the Arboretum to the north
C. Open Spaces

Axial Open Spaces

As open spaces -- that also serve as connectors -- axial open spaces shall gather building frontages in a way that encourages both community and individuality. These spaces shall also accommodate multi-modal circulation including pedestrian, bicycle, electric carts, and low-speed service vehicles (where required). The “Promenade” is the primary pedestrian spine for the SUMC that connects all the districts. This important space is perpendicular to the main vehicular spine of Pasteur Drive. Both of these “structures” are programmed with shared amenities such as paving, planting, and lighting from Connective Elements.

- activate the edges of axial open spaces with program to engage activity
- provide accommodation of multi-modal circulation
- encourage community and interaction between disciplines through pedestrian circulation and connections
- develop identity for the individual projects through clear wayfinding and circulation systems
- provide lighting, benches, receptacles and other amenities that encourage pedestrian use
- create a pedestrian friendly environment along the Promenade (no bikes north of Pasteur Drive).
C. Open Spaces
Promenade

The Promenade is the main pedestrian open space that connects the districts of the SUMC, and continues off-site to link up with the Central Promenade of the Shopping center. The space of the Promenade shall be visually enhanced with the use of enhanced paving, planting, and passage lighting. Additionally, the new projects fronting the Promenade shall be programmed to activate this space with pedestrian friendly uses – such as meeting rooms, cafeteria and shops, and secondary entries.

As shown in the cross-section, the new planting of the Promenade shall also be of a scale to benefit and engage the roof terrace of the new SHC.
C. Open Spaces

Promenade

B. section thru Promenade showing proposed SHC Replacement Hospital roof terrace
This page intentionally left blank.
C. Open Spaces

Intimate Open Space

Intimate open spaces shown interspersed throughout the new buildings provide tranquil specialty landscapes, healing gardens and intimate courtyards that have unique identities and qualities tied to their specific users. Although these spaces can be more private and specific in use, they can also add human scale and character to buildings.

- develop identity for the individual projects through clear wayfinding and circulation systems
- tailor intimate open space to access, usability, and program
- intermingle new building with courtyards to connect to the Stanford identity
- plan new buildings around intimate outdoors space to encourage internal organization
C. Open Spaces

SHC Courtyard

The SHC Courtyard is located where the original entry court to the Stone Building is located. This intimate open space is positioned at the intersection of the two main circulation structures organizing the layout of the campus plan.

This important, yet internal, open space shall be designed to enhance its character as a unique destination as the “hub” -- adjacent to the intersection of the two main pedestrian and vehicular spines. This may include the implementation of a dramatic, (yet more environmentally sustainable) landscape feature to take the place of the original fountain.
C. Open Spaces

SHC Courtyard

A. section of SHC Courtyard showing SHC Replacement Hospital on one edge and Foundations in Medicine Building on the other
This page intentionally left blank.
D. Pathways

Pathways separate modes of circulation (peds, bikes, cars, carts, buses) into multiple systems of the connective fabric. The programming for pathways is specific to their role within the connective fabric of the campus. There are pathways that are pedestrian only – such as the Promenade – and there are other pathways that are “bicycle friendly” such as Governor’s Avenue. In general, Pathways utilize secondary paving materials from Connective Elements section that compliments primary material at plaza-like areas. (Pathways and plaza areas are typically punctuated with small groves of ornamentals, or “Passage Trees”, that are artfully arranged with lighting and interspersed with other Shared Amenities such as benches, receptacles, and signage).
As a complement to the Academic Walk (the primary east/west circulation mall that links the School of Medicine through the Clark Center to the Chem/Bio Precinct), Research Way will serve as a secondary route that will link FIM1, FIM2 and FIM3 with the other School of Medicine Buildings as well as the Chemistry and Biology buildings to the west. The character of this path will be more intimate than the grander scale of the Academic Walk and will include a series of smaller scaled ‘outdoor rooms’ that serve as additional collaborative and gathering spaces adjacent to the proposed research facilities.
D. Pathways

Pasteur / Roth

A. Pasteur / Roth Drive connection looking East across Pasteur Mall

B. Pasteur / Roth Drive connection looking West

typical section through Pasteur/Roth Connection

Diagram showing location of Pasteur/Roth Connection
The Discovery Walk starts at Campus Drive, inviting the students, faculty members and visitors to the Li Ka Shing Center for Learning and Knowledge (LKSC) which serves as the hub for the School of Medicine. This palm-lined walk leads to the ‘front door’ and into the lobby of the LKSC which supports a welcoming reception area, three lecture halls, a public café and a bookstore. Inside the LKSC, the Discovery Walk will highlight the activities, discoveries and milestones of the school of medicine.
III. Building Design

Proposed new buildings will re-define the architectural image, and spatial character of the medical campus. The intent of the Design Guidelines is to allow a variety of architectural expressions for each institution, consistent with progressive practices of medicine, while promoting a cohesive campus image.
This guideline category establishes the placement of new buildings – using principles of Visibility and Hierarchy – in relation to each other in terms of institutional Identity and Prominence. This section presents perspectival views of the Medical Campus that show the balance and hierarchy between the individual districts.

The visual character of buildings on the academic side of campus has been established by a core of buildings with similarities of density, massing, material, and color. These traditionally styled buildings form a uniform backdrop for important buildings, such as Memorial Church and Hoover Tower, to stand out. On the Medical Center side of campus, where each district has a distinct density pattern, Visual Hierarchy is founded on a more compositional basis. The physiognomy of new buildings is derived by their functional program and tempered by specific context, site planning objectives, and formal expression.

A. Visual Hierarchy
A. Visual Hierarchy

Pasteur Mall District

The institutional identity and image of this district, and SUMC in general, is established by the scale and position of the new SHC. Its central location, larger massing, and configuration of adjacent, formal open space reinforces its role as the heart of the Medical Center.

Within SHC itself, visual hierarchies afforded by the modular massing create kind of concentric hierarchy of space that lead toward the center. The staggered massing of the building modules create a stepped figure rising toward the center, shaping a series of interior courtyards, and roof terraces fronting large formal and axial outdoor spaces. The stepped massing allows for a visual relationship to develop across Pasteur Mall between the SoM buildings and SHC, reinforcing their distinct, yet complimentary identities.
A. Visual Hierarchy

LPCH District

The scale and prominence of the new LPCH at the corner of Welch and Quarry Roads portray the institutional identity of LPCH. This image is established by the unique corner presentation of LPCH and is softened by integrating “The Arboretum” typology of open space into the fingers of the building. In this way the building shall be viewed thru a more “picturesque lens” as a harmony of building and landscape.

Within LPCH itself, visual hierarchies afforded by the radial plan create views of enhanced perspective toward the entry and between volumes toward the core.
A. Visual Hierarchy

School of Medicine District

The three new FiM Buildings (Foundations In Medicine) form a clear and porous boundary to the SoM, while presenting a distinct, yet complimentary face to the SHC located across Pasteur Mall. In keeping with the recent additions to the SoM of the Clark Center and the CCSR, the FiMs reinforce a developing high-tech SoM vernacular which consists of exposed steel, and generous expanses of glazed wall areas framed with limestone-colored walls.

The positioning of these buildings extends the developing grid of axial open spaces within the SoM and creates gateway conditions on its border with SHC, facilitating a cross-district population relating to the translational medicine nature of their programming.
A. Visual Hierarchy

Quarry Corridor District / Hoover Site

The placement of the new Hoover Medical Office Building and Hoover Garage take advantage of underutilized areas around Hoover Pavilion to revitalize the connections of this facility to the Quarry and Welch Corridors and to enhance views of the site. The new structures are configured to preserve the prominence of the existing Hoover Pavilion.

The new MOB on Quarry Road is positioned to strengthen the intersection at Sweet Olive Way and structure the building frontage on Quarry Road. Similarly, the new parking garage is positioned to structure a pedestrian edge for the new Hoover Courtyard, providing vehicular points of entry facing the intersection at Sweet Olive Way and to the new access road between the new MOB and Hoover Pavilion.
B. Density Pattern & Context

This guideline section establishes how the pattern of buildings, footprints, and height of new development is balanced by major and minor open spaces, positions main site circulation paths, and how the height is modulated to relate to lower buildings along the Welch Corridor and the academic side of campus.

The density pattern of buildings is one of the most fundamental planning structures on which a campus environment builds its character and identity—it determines the relation between building and open space. The historic character of the Stanford Campus has an almost rural quality of low-rise buildings built around a family of formal quads and interior courtyards, connected by generous open space, with large native, shade-producing live oaks. Because of this traditional formation, the academic side of campus is imbued with a strong sense of place, identity, and hierarchy. By contrast, and due to larger and increasingly complex programming, research and medical campus buildings require a higher floor to area ratio (FAR), and are less porous physically. This gives the SUMC and SoM Districts a semi-urban character, which can be balanced by planned open spaces, and enhanced pedestrian connections.

Main Quad, taken from Hoover Tower, illustrating the density of building and open space on the academic campus.
Initially, the design of the Stanford Hospital sought to establish its own architectural identity loosely based on a Modern interpretation of the Stanford Quad’s formal structure. Even then, the pattern of the Hospital was much denser than that of the Quad. In a similar spirit of interpretation, the design of the new Replacement Hospital sustains the Stanford sensibility by creatively integrating building and open space in a contemporary manner. The zoning of density in the Pasteur Mall District follows a more concentric pattern, wherein the tallest, densest portions of the site is weighted toward the center of campus, rising to a maximum of 130 feet. This basic density pattern provides fundamental advantages toward SUMC’s goal of meeting current standards for clinical space and patient care:

- strong sense of hierarchy focused on the new Replacement Hospital
- vertical height equates to operational efficiency required for new hospitals
- concentrate height toward the center to mitigate visual impact at periphery
- dense center creates a vital core within the SUMC
- symbolic use of formal open space as visual amenity
- establish definitive edges along campus open spaces
- provide a variety of axial and interior open spaces to align with nature, provide natural light, and balance density
B. Density Pattern & Context

Pasteur Mall District

The Pasteur Mall District is anchored by the new replacement hospital for the SHC. The modular planning concept produces a composition of legible building forms that break down the overall scale of the complex. This alternating density pattern of building modules will accommodate 22-bed acute care units and 20-bed intensive care units, which are ideal sizes from an operational perspective. This pattern is also reminiscent of the Main Quad with its firm axial geometry fronting Pasteur Mall. The basic building module is arranged to enhance the following planning and open space directives:

- reduced scale utilizing a modular density pattern
- clearly identifiable entrances facing key open spaces
- structure major and minor open space to balance denser development
- concentrate height toward the center to reduce impact on adjacent properties
- minimize height as necessary to respect existing campus buildings
- intermingle building and courtyard landscape
- provide courtyards to allow natural light and landscape to penetrate density
B. Density Pattern & Context

LPCH District

The new LPCH expansion creates a closer relationship to Welch and Quarry Roads and is planned around a central courtyard as a main organizing feature of the plan. The organically-inspired footprint of the expansion is configured to break down the massing by creating a dynamic street frontage that allows the building and landscape to become integrated with each other.

- clearly identifiable entrances facing key open spaces
- Arboretum landscape provides balance to the higher density
- plan of hospital around a central courtyard provides orientation and appropriate scale for patients and family
- structure major and minor common open spaces

pattern of building density and open space in LPCH District

abstract section showing rough building envelopes and the strategy of terracing up from Welch Road at LPCH
B. Density Pattern & Context

School of Medicine District
The character of the SoM will be built upon a rectangular grid of avenues and walks running east-west. This density pattern is most clearly enhanced by recent additions of two academic research buildings: Clark Center and CCSR. The three proposed FIM buildings will also be long linear buildings which engage the grid and define the edge of the SoM. The buildings' use of staggered footprints breaks down the length of the facades and provides courtyards fronting the district's axial walks.

- maximum allowable heights: 66'-85' for FIM 1, and 50'-66' for FIM 2 and 3
- alternate building and open space with rational density pattern
- enforce semi-urban qualities of the SoM campus
- reinforce FIM's role in defining the edge of SoM
- structure major and minor common open spaces
- strengthen connectors to SUMC

abstract section showing rough building envelopes and consolidation of density toward the center of the campus
B. Density Pattern & Context

Quarry Corridor District / Hoover Site

The density pattern of the new MOB and Parking Garage at the Hoover Site will revitalize the relationship between the existing Hoover Pavilion and its semi-urban context. The arrangement and heights of the new buildings will preserve or enhance views of the Hoover Pavilion, including those of the pyramidal roof seen through the trees from Palm Drive. The new building footprints and building edges facing Hoover shall define vital new connections to open space such as the new central garden that provides a main orienting feature for the site.

- reduced scale with typological density pattern
- clearly identifiable entries to all buildings
- ensure natural light falls into all courtyards and rooms
- minimize height to respect existing building
- site new buildings to maintain primary views to Hoover Pavilion
- structure major and minor open space
C. Massing & Building Composition

This guideline category establishes the **volumetric shape** of new buildings within each district and presents how massing techniques shall be used to mitigate scale, encourage pedestrian way-finding, and enhance overall character of the District.

Stanford University campus buildings are generally low-rise, horizontal, and relatively consistent in form from one building to the next. The buildings also serve to "structure" and/or reinforce the main precepts of the common open space. Since the density pattern of the SUMC requires much higher density ratios than the academic campus, strategies are employed to mitigate scale, enhance compositional density patterns, and encourage pedestrian way-finding. These strategies are tempered by the understanding that hospital buildings require a certain level of unique expression to enhance public visibility, and institutional identity.

By virtue of the programmatic, clinical, and operational requirement to arrange medical buildings vertically, the SUMC buildings will naturally differ from the university's academic buildings. Understandably, "contextual design" with these kinds of buildings will need to be interpretive. It is an important principle for SUMC buildings to authentically, rather than merely representationally, express their internal organization and create compositions that respect their context.
C. Massing & Building Composition

Body: Color / Material difference

Flat Roof

Base: Articulation Techniques

Massing techniques

10' Top

20' Base
C. Massing & Building Composition

Vertical Juxtaposition
Outward expression of vertical circulation (e.g. in the form of towers) can create nodes of visual interest that break up an expanse of glass wall, extend base material up into the body of the building, or signify entry. This technique can also be used by combining base and body conditions for portions of a building’s mass. These elements shall be considered compositionally to enhance building massing objectives.
Terracing

The massing technique of terracing shall be used to provide human scale to larger buildings where access to exterior terraces is programmatically feasible and desirable. Examples of this technique include the existing LPCH and the new SEQ building.
C. Massing & Building Composition

Staggering

The massing technique of staggering shall be used to decrease the scale and length of buildings and create an intimate zone of public open space for entry and egress opportunities. Staggering shall be used to create private courtyards and roof terraces. Examples of this technique can be seen at the Law School and Electrical Engineering Building.
C. Massing & Building Composition

Cantilevering

The technique of cantilevering involves pushing or pulling portions of the building in or out to break down the mass and/or express a building's internal organization as a composition of smaller pieces. Building articulation shall further distinguish massing compositions, and enhance the functional organization of the building.
C. Massing & Building Composition

Curving
The technique of curving building mass shall be used to create a foreshortened view or receding building frontage. This technique is beneficial to interior planning as well in relieving the “tunnel effect” posited by parallel placement of repetitious building wings. The curved plan, where implemented, shall be used to orient interior program out toward open spaces to reinforce experiences of nature. This a a particularly valuable technique when used to enhance the environment of patient rooms.
C. Massing & Building Composition

Daylight Basements
A number of campus buildings utilize daylight basements which modulate the ground plane at the base of buildings. Although an example of this technique exists at the Nursing Pods on the Medical Campus, it should be used sparingly as this condition creates a moat around the building which cause accessibility, landscaping, and security issues.
C. Massing & Building Composition

Glass Wall

Large areas of the new projects shall utilize transparent walls to respond to building needs for natural light, visibility and contemporary architectural expression. These areas shall be considered compositionally to enhance building massing objectives. Mullion pattern and spacing shall be designed to promote visual interest and express human scale.
Fenestration
The body of the building rests on top of the base and comprises the substantial mass of the building rising to a height of 60’, 85’, or 100’. This zone contains the main functions of the building and is intended to reflect the program within. Fenestration shall be modulated to register scale or grouped to enhance building massing strategies.
Shading
Systems for sun-shading where used shall be considered a major part of a building's articulation and architectural expression. Examples of shading systems used on the campus can be seen at the CCSR and Halperin Family Wing of the Cantor Center for the Arts.
C. Massing & Building Composition

Flat Roof Eave
At the medical campus, the top of a building – which comprises everything above the roofline including exhaust stacks and mechanical equipment penthouses – shall be flat. Buildings with narrow floor plates of less than 90’ and/or less than 85” in height, shall use of a roof eave approach (similar to Clark Center) that creates a shadow line at the parapet for screening.
Setback Penthouse

For buildings with larger floor plates of more than 90’ in width, and/or more than 85’ in height, shall use a setback penthouse approach for mechanical equipment screening. This strategy adds an element of visual relief to the massing by treating the penthouse as a separate volume set back a minimum of 12’ from the edges of the body of the building.
C. Massing & Building Composition

Roof Terrace

Where feasible roof terraces and green roofs shall be employed to further differentiate high and low volumes and optimize integration of building and landscape. Roof Terraces present a “fifth façade” to taller portions of the building massing. Drought tolerant planting shall be a high priority in the consideration of green roofs.
C. Massing & Building Composition

Pasteur Mall District
The Pasteur District is anchored by the Stanford Hospital and Clinics. The new Replacement Hospital is the largest new project of the SUMC. The modular planning scheme for the new Replacement Hospital pursues a massing that is a composition of the legible building forms and is used to reduce the overall scale of the complex. The massing for the new SHC utilizes staggering and terracing to create private courtyards and roof decks to provide a greater visual setback while integrating the new SHC into the surrounding context and open space. The new SHC shall utilize a number of other massing strategies such as cantilevering to create a walkable and protected, human-scaled condition at the base; and also a grand entry canopy to provide hierarchy, visibility, and shelter for patient pick-up and drop-off. The large building’s scale is further mitigated through the expression of its circulation towers and mechanical equipment screening, which is setback at the roof of each of the nursing units. Also the SoM buildings define context for the taller modules along Pasteur Drive by creating a firm boundary edge to the district.
C. Massing & Building Composition

LPCH District
The massing of LPCH’s hospital expansion wraps around the northern end of the existing hospital facing the corner Welch and Quarry Roads. The massing plan provides a dynamic visual presence on the corner creating a focal point for the main entry facing Welch Road. The massing of the addition provides a clear expression of LPCH’s internal organization – with distinct nursing wings connected by a spine of transparent circulation. The base of LPCH utilizes techniques of curving and terracing to reduce the visual presence of the building masses fronting the streetscape along Welch Road. The nursing wings “reach out” to the landscape and draw the nature of the Arborellum within. The proposed facades of LPCH are articulated with grouped fenestration, shading devices, roof canopies, and material changes give the massing depth, richness and texture.
C. Massing & Building Composition

School of Medicine District
The character of the SoM is dominated by the presence of the recently built research facilities of the Clark Center and CCSR Buildings. The three proposed FIM Buildings (Foundations in Medicine) fall in line with those projects of long linear buildings which define the edge of the SoM. The massing technique of staggering shall be used to break down the length of their facades, and provide more intimately scaled open space for entry expression. The massing technique of cantilevering shall also be used to further define areas of the façade to express the building’s internal organization, lend human scale, and create protected areas around the building where it fronts exterior open space. The taller massing of FIM provide a robust edge along Pasteur Drive which help transition between the SHC building modules and the SoM campus. Sculptural canopies further develop the main entries and play a signifying role on the School of Medicine campus. Mechanical screening becomes another layer in the massing of each building -- set back from the cornice at the roof.
C. Massing & Building Composition

Quarry Corridor District / Hoover Site
The massing and disposition of the new clinical/medical office building (MOB) and the parking garage at the Hoover Site are designed to preserve and enhance the relationship of Hoover Pavilion to the SUMC and Quarry Corridor. The new buildings flanking the Pavilion enhance views of the new Hoover campus from Quarry and Palo Road and utilize compositional techniques of staggering, cantilevering and terracing to break down the massing, signify areas of entry, and provide pedestrian scale at the edges of new open spaces. The massing of the new buildings shall be configured to service the concept of articulated boundary walls with more transparent walls facing the interior of campus.

The new Hoover Parking Garage provides a firm southern edge to the new central garden, and is accessible from the signaled intersection to the south. Ground floor modulations -- such as the “drawer pull-out” on the parking garage and setbacks of the exterior walls of the MOB -- create human scale, and protected walks linking the buildings to the open space. Additionally, Building Articulation such as entry canopies, clerestory windows, and setback mechanical screening at the roof further serve to break down the vertical mass of the buildings.